Predicting Macro-Economic Growth: Evidence from Dividend Markets

Jules H. van Binsbergen†
Northwestern Kellogg
and Stanford GSB
and NBER

Wouter H. Hueskes‡
APG Asset Management

Ralph S.J. Koijen§
Chicago Booth
and NBER

Evert B. Vrugt¶

This version: March 2011

Abstract

We use a new data set on dividend futures with maturities up to 10 years to uncover expected dividend growth rates across three major regions around the world: the US, Europe, and Japan. We use these futures to derive equity yields, analogous to bond yields, and decompose these yields into expected growth rates of dividends and a risk premium component. We show that these expected growth rates are important leading indicators of economic growth as measured by GDP growth, consumption growth, and dividend growth. The predictive power of dividend futures outperforms other indicators such as bond yields. We relate the dynamics of growth expectations to recent events related to the financial crisis and the recent turmoil following the earthquake in Japan.

Keywords: Long and Short-Term Economic Growth Rates, International Economic Outlook, Equity Yields, Dividend Markets

*First draft: October 2010. This paper was previously circulated as: “A Term Structure of Growth.” We thank Jerome Dominge and Sander van Zelm at BNP Paribas for providing us with the data. We are grateful to Michael Brandt, John Campbell, John Cochrane, George Constantinides, Darrell Duffie, Lars Hansen, John Heaton, Anil Kashyap, Bryan Kelly, Martin Lettau, Jonathan Parker, Anamaria Pieschacon, Raghu Rajan, Sergio Rebelo, Costis Skiadis, Stijn Van Nieuwerburgh and seminar participants at the McGill, Minneapolis Fed, Stockholm School of Economics (SIFR), Yale, the University of Utah, and Carnegie Mellon University for helpful comments and suggestions.

†j-vanbinsbergen@kellogg.northwestern.edu, (847) 491-3838, http://www.stanford.edu/jvb2/
‡wouter.hueskes@apg-am.nl, +31 (0) 20 604 8309
§ralph.koijen@chicagobooth.edu, (773) 834-4199, http://faculty.chicagobooth.edu/ralph.koijen/
¶evrugt@xs4all.nl, http://www.evertvrugt.com

Koijen is also associated with Netspar (Tilburg University)
We use a new data set on dividend futures with maturities up to 10 years to uncover expected dividend growth rates across three major regions around the world: the US, Europe, and Japan. At the turn of the century, a new and growing market has developed where dividends are traded separately from their underlying index. An index dividend future is a standardized contract where at a future time \(T \), the owner pays the futures price, which is determined today, and receives the index dividends paid during calendar year \(T \). We use these futures to derive equity yields, analogous to bond yields, and decompose these yields into expected growth rates of dividends and a risk premium component. We show that these expected growth rates are important leading indicators of economic growth as measured by GDP growth, consumption growth, and dividend growth. The predictive power of dividend futures outperforms other indicators such as bond yields. We relate the dynamics of growth expectations to recent events related to the financial crisis and the recent turmoil following the earthquake in Japan.

Our paper contributes to a large literature which addresses the predictability of economic growth. Expectations about future economic growth are of central importance for the decisions of households, firms, and governments. However, a large empirical literature documents that predicting economic growth, as measured by either GDP growth, consumption growth, or dividend growth, seems challenging.¹ In this paper, we explore whether the information contained in equity yields across maturities is useful to forecast various measures of economic growth across different horizons.

To this end, we study a novel data set of dividend futures with maturities up to 10 years across three major world regions: the United States, Europe, and Japan. These data provide expected risk-neutral growth rates of dividends with one-year intervals. Using a Vector Autoregression, we show how to uncover actual (physical) dividend growth expectations and show that these asset prices are important leading indicators (predictors) of economic growth as measured by GDP growth, consumption growth and dividend growth. We perform a horse race between our equity yields and several well-known predictors and find that the predictive power of dividend futures seem superior to alternative measures such as long-term bond yields and the yield spread.

Our daily data set covers the time period between October 2002 and September 2010 and comes from several major banks who are important players in the market for dividends. These banks have provided us with their proprietary dividend databases, which they use firm-wide both as a pricing source and to mark the internal trading books to the

The basic structure of a dividend futures contract can be summarized as follows. An index dividend future is a standardized contract where at maturity, the buyer pays the futures price, which is determined today, and the seller pays the dollar amount of dividends during a certain calendar year. Take for example the 2019 dividend future on the DJ Eurostoxx 50 index, which on October 13th 2010 traded for 108.23 Euros. On the third Friday of December 2019, the buyer of the futures contract will pay 108.23 Euros, and the seller of the futures contract will pay the cash dividend amount on the Eurostoxx 50 index that has been paid out during the 2019 calendar year.

Before 2008, index dividend futures and swaps were traded in over-the-counter (OTC) markets. Since 2008, dividend futures are exchange traded for several major indexes in an increasingly liquid market. They are available for every future calendar year with maturities up to ten years.

The term structure of growth rates we present provides a new way of assessing the short-term and long-term influences of specific world events and policy decisions. For example, we can assess how Central Bank monetary policy and government’s fiscal policy decisions affect growth expectations of investors across different horizons. As an application of our framework, we study in this paper the timeline of the financial crisis and how growth expectations altered as the crisis unfolded. For instance, this allows us to contribute to the debate which event triggered the financial crisis. One view contends that the default of Lehman Brothers was the major event, whereas the alternative view contends that the announcements by (former) policy makers such as Ben Bernanke and Alan Greenspan had a large impact on future growth expectations. Consistent with the second view, we find the largest decline in expected growth rates on the day of a congressional hearing with Alan Greenspan.

More broadly, the term structure we uncover can improve our understanding of the nature of macro-economic shocks. There is a long-standing debate in macro economics and finance to what extent macro-economic shocks are permanent or transitory. Important contributions by Campbell and Mankiw (1987), Campbell and Shiller (1988), and Cochrane (1994) suggest that shocks to dividends and consumption are largely permanent. Such conclusions either follow from higher-order ARMA models or multivariate models of consumption and income, or dividends and asset prices. We enrich the information set to

2 Further details are provided in Section I.

3 Strictly speaking, it is the dividend amount that is paid on the DJ Eurostoxx 50 index between the third Friday in December in 2018 and the third Friday in December in 2019. Furthermore, in practice only the difference between the two parties is settled, implying that only one payment takes place.
address this question with growth rates implied by dividend growth rates. Our estimates imply a large predictable component in GDP growth, consumption growth, and dividend growth, which suggests that macro-economic shocks may be more transient than implied by estimates based on models not using dividend futures. This has important implications for the design of general equilibrium models that are designed to explain quantities and asset prices.

As expectations about future growth are an important determinant of asset prices, an alternative way to uncover market expectations is to use financial markets data. The level of the stock market over time and across countries is affected by growth prospects of cash flows or dividends and could therefore be informative about such expectations (Campbell and Shiller (1988)). In practice, inferring expected growth rates from aggregate stock market data has turned out to be challenging for several reasons. First, the value of the stock market is influenced by both short and long-term expected growth rates. That is, ceteris paribus, the value of the stock market will go up regardless of whether either short-term or long-term expected growth rates (or both) increase, and a time series model is required when trying to disentangle the two. The mere fact that our data has a maturity structure contains important information about growth rates across different horizons. Second, the valuation and fluctuations of the stock market are not only determined by expected growth rates, but also by time-varying discount rates. This discount rate consists of two parts: a risk free interest rate, which can be observed through the term structure and can therefore be controlled for, and a risk premium component, which is not observable. Empirically, many studies have found that fluctuations of the discount rate seem to dominate when decomposing the variance of stock prices normalized by current dividends (Campbell and Shiller (1988), Cochrane (2008), and Binsbergen and Koijen (2010)).

Most of the stock market literature has either focused on the cross-section of stock returns and cash flows, or on the value of the aggregate stock market, which equals the sum of discounted aggregate cash flows. However, when studying the aggregate market, the individual terms in the sum of discounted dividends, also called dividend strips, provide a wealth of information about growth expectations and discount rates over different horizons. A simple no-arbitrage condition links dividend strip prices to dividend futures prices, requiring a risk-free interest rate as the only additional input. As such, the dividend futures market allows us to break up the index into pieces, and study the properties of the pieces separately. In this paper we focus on studying the risk adjusted growth rates related to each piece and we relate those to the crisis. In Binsbergen, Hueskes, Koijen, and Vrugt (2010) we focus on the return characteristics of dividend strips.
Our paper relates to Binsbergen, Brandt, and Koijen (2010) who use options on the S&P500 index (LEAPS) to study the asset pricing properties of short-term dividend strips. Using put-call parity, they uncover the prices of short-term dividend strips. An advantage of using index options is that these derivatives have been exchange-traded since 1996 which allows the authors to study a longer time series. They document several return properties for short-term dividend strips in comparison with the aggregate stock market. An important disadvantage, however, is that index options have fairly short maturities of up to three years. The advantage of our data set is that dividend futures contracts have maturities up to ten years and that we use data from three major markets.

1 Financial markets and expected growth rates

An index dividend future is a standardized contract where at maturity, the buyer pays the futures price, which is determined today, and the seller pays the dollar amount of dividends during a certain calendar year. Take for example the 2019 dividend future on the DJ Eurostoxx 50 index, which on October 13th 2010 traded for 108.23 Euros. On the third Friday of December 2019, the buyer of the futures contract will pay 108.23 Euros, and the seller of the futures contract will pay the cash dividend amount on the Eurostoxx 50 index that has been paid out between the third Friday in December of 2018 and the third Friday in December of 2019.

Let D_{t+n} denote the stochastic dividend paid out in n years from today’s date t. Further, let $\mu_{t}^{(n)}$ denote the appropriate per-period discount rate for that dividend. Then the present-value $P_{t,n}$ of D_{t+n} is given by:

$$P_{t,n} = E_{t} (D_{t+n}) \exp \left(-n\mu_{t,n} \right).$$ \hspace{1cm} (1)

Splitting up the discount rate $\mu_{t,n} = r_{t,n} + \theta_{t,n}$ into the interest rate for period n, denoted by $r_{t,n}$, and the risk premium for period n, denoted by $\theta_{t,n}$, we can rewrite equation (1) as:

$$P_{t,n} = E_{t} (D_{t+n}) \exp \left(-n[r_{t,n} + \theta_{t,n}] \right).$$ \hspace{1cm} (2)

Further, by defining $g_{t,n}$ as the per-period expected growth rate of dividends over the next n periods, we can rewrite expression (2) as:

$$P_{t,n} = D_{t} \exp \left(n[g_{t,n} - r_{t,n} - \theta_{t,n}] \right).$$
Finally, define the equity yield as:

\[g^\star_{t,n} \equiv g_{t,n} - \theta_{t,n}. \]

(3)

We can compute \(g^\star_{t,n} \) using two observables, the price-dividend ratio of dividend strip \(n \) and the interest rate for period \(n \):

\[g^\star_{t,n} = \frac{1}{n} (\ln P_{t,n} - \ln D_t) + r_{t,n}. \]

(4)

In reality, the way the contract is quoted, is not in terms of the “spot” price \(P_{t,n} \), but in terms of the futures price, which we will denote by \(F_{t,n} \). Under no arbitrage, the following relationship holds:

\[F_{t,n} = P_{t,n} \exp(nr_{t,n}). \]

This implies that the equity yields follow directly from the futures prices:

\[g^\star_{t,n} = \frac{1}{n} (\ln F_{t,n} - \ln D_t) . \]

(5)

Note that the growth rate \(g^\star_{t,n} \) is the per-period growth rate for the next \(n \)-years. As such it represents an average growth rate. However, when considering a 10-year horizon, for example, it may also be interesting to compute the expected growth rate between periods 5 and 10, which we will call the forward growth rate. The forward equity yield between period \(n_1 \) and \(n_2 \) is defined as, where \(n_2 > n_1 \):

\[f_{t,n_1,n_2} \equiv \frac{1}{n_2 - n_1} (\ln F_{t,n_2} - \ln F_{t,n_1}). \]

(6)

2 Data

2.1 Three world regions

We focus our analysis on three major stock indices representing three world regions: the US, Europe and Japan. For Europe, we focus on the EURO STOXX 50 Index. This index is a leading blue-chip index for the Eurozone. The index covers 50 stocks from 12

\footnote{Note that this formula holds for non-dividend paying assets. At first sight this may be confusing, as the focus of the paper is on dividends. Note that the index does indeed pay dividends, and therefore futures on the index are affected by these dividend payments. However, the futures contracts we study are not index futures, but dividend futures. These dividend futures have the dividend payments as their underlying, not the index value. As dividends do not pay dividends, the formula below is the appropriate formula.}
Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain traded on the Eurex. In February 2011, the index has a market capitalization of 2 Trillion Euros (2.8 Trillion dollars) and captures approximately 60% of the free float market capitalization of the EURO STOXX Total Market Index (TMI), which in turn covers approximately 95% of the free float market capitalization of the represented countries. As such, the index seems fairly representative for the euro area despite the fact that it only includes 50 stocks. For Japan, we focus on the Nikkei 225 index, which is the major stock index for the Tokyo Stock Exchange in Japan. It is comprised of 225 blue chip stocks on the Tokyo Stock Exchange. Finally, we use the S&P500 index for the US. The S&P 500 is a capitalization-weighted index of the prices of 500 large-cap common stocks actively traded in the United States. The stocks included in the S&P 500 are those of large publicly held companies that trade on one of the two largest American stock market exchanges; the NYSE and the NASDAQ.

2.2 Dividend futures data

Our daily dividend future data come from BNP Paribas, a major player in the market for dividends, and covers the US, Europe, and Japan. BNP Paribas provided us with its internal implied dividend database, which it uses firm-wide both as a pricing source and to mark the internal trading books to the market.

The market for dividends is relatively young and started around the turn of the century. With increased trading activities in options, forwards, and structured products, the dividend exposure increased on investment banks’ balance sheets. By selling structured products to investors that have an implicit long forward position in it (long out-of-the-money call option and/or short out-of-the-money put option), investment banks accumulate significant long dividend positions. However, the hedging is done with the underlying index constituents, which pay uncertain dividends. This exposes investment banks to dividend risk, the risk between anticipated and actual dividends, which they prefer to offload to free up capital. Other than investment banks and dealers, hedge funds are important participants in this market. Also, several pension funds are active in the dividend market. For them, dividend futures may be useful tools to match the duration of assets and liabilities, particularly for defined benefit plans that (partially) index pension payments with wage or GDP growth. Most of the trading in dividends occurs over-the-counter (OTC) in the inter-broker market. Since mid 2008, however, exchange traded dividend futures markets have started; first in Europe (SX5E) and later in Japan (NKY).

The current size of the exchange traded dividend future market is substantial,
particularly in Europe, with a total open interest of $10 billion for the DJ Eurostoxx 50 index. This is in addition to a large OTC market. For example, by mid October 2010, the open interest in the exchange-traded Dec 2010 dividend future on the DJ Eurostoxx 50 was 1.7 billion dollars. The open interest in the Dec 2011 contract was 2.5 billion dollars. The open interest decreases for longer maturity contracts, but even the Dec 2019 contract has a 200 million dollar open interest.

Index dividend contracts are traded in exposure per (dividend) point. Formally, the pay-off of a contract is the sum of the declared ordinary gross dividends on index constituents that go ex-dividend during the period as stipulated in the contract, which is usually a year. Special or extraordinary dividends are excluded.\(^5\) The decision on in- or exclusion of dividends is guided by the exchange or the index provider. By entering a long dividend swap or future, an investor will receive the actual dividends against the market-implied level at inception of the contract. Contracts are cash-settled at the expiration date and there are no interim cash flows.

2.3 Dividend data

To compute daily dividends, we obtain daily return data with and without distributions (dividends) from S&P index services for the S&P500 index. We use Global Financial Data and Datastream to obtain the same objects for the DJ Eurostoxx50 index and the Nikkei index. Cash dividends are then computed as the difference between the return with distributions and the return without, multiplied by the lagged value of the index. As the dividend futures prices are based on a full calendar year of dividends, we use the past year of dividends as the denominator in equation \(^5\). For example, if we want to compute the equity yields on October 15th 2010, we use as the denominator the sum of the dividends paid out between October 16th 2009 and October 15th 2010. This also reduces concerns related to seasonalities, as both the future dividend price as the current dividend level refer to a whole year of dividends.

2.4 Financial crisis timeline

We obtain detailed data on the timeline of the financial crisis from the St. Louis Fed.\(^6\) We also use an alternative timeline of the crisis as provided by the New York Fed.\(^7\) These

\(^5\)Over time, the share of special dividends as fraction of total dividends, has decreased and is negligible for the sample period that we consider, see DeAngelo, DeAngelo, and Skinner (2000).

\(^6\)See also http://timeline.stlouisfed.org/index.cfm?p=timeline

\(^7\)See http://www.ny.frb.org/research/global_economy/Crisis_Timeline.pdf
two data sources help us to resolve the question which events most affected investors’ short and long-term expectations during the financial crisis.

3 Decomposing equity yields

We show in Section 1 that equity yields depend on expected dividend growth rates \(g_{t,n} \) and a risk premium component \(\theta_{t,n} \), see equation (3). In this section, we develop a simple approach to decompose equity yields into both components.

A time period corresponds to one month. We first define annual log dividend growth as:

\[
\Delta d_{t+12} = \ln \left(\sum_{i=1}^{12} D_{t+i} \right) - \ln \left(\sum_{i=1}^{12} D_{t-12+i} \right).
\]

We are mainly interested in forecasting annual dividend growth, up to \(n \) years into the future. That is, we want to compute \(E_t(\Delta d_{t+12n}) \). To this end, we first predict annual dividend growth using a vector of equity yields, \(x_t \):

\[
\Delta d_{t+12} = \psi_0 + \psi_1 x_t + u_{t+12}.
\]

To compute the \(n \)-year expectations, we model the time-series dynamics of equity yields as a first-order vector autoregressive (VAR) model:

\[
x_{t+1} = \mu + \Gamma x_t + \varepsilon_{t+1}.
\]

The monthly VAR model implies an annual VAR model:

\[
x_{t+12} = \mu_A + \Gamma_A x_t + \varepsilon_{A,t+12},
\]

where:

\[
\mu_A \equiv \left(\sum_{i=0}^{11} \Gamma^i \right) \mu, \quad \Gamma_A \equiv \Gamma^{12}, \quad \varepsilon_{A,t+12} \equiv \sum_{i=1}^{12} \varepsilon_{t+i}.
\]

We estimate the parameters in (7) and (8) using ordinary least squares (OLS). To use as much information, we use overlapping data.

Using the joint dynamics for dividend growth and the equity yields in (7) and (8), we
can compute the conditional expectation of one-year dividend growth as:

\[E_t(\Delta d_{t+12}) = \psi_0 + \psi'_1 x_t \]

\[\equiv \gamma_{0(1)} + \gamma'_{1(1)} x_t. \]

as well the expectation of annual dividend growth \(n \) years ahead \((n > 1)\):

\[E_t(\Delta d_{t+12n}) = E_t(\psi_0 + \psi'_1 x_{t+12(n-1)}) \]

\[= \psi_0 + \psi'_1 \left(\sum_{i=0}^{n-2} \Gamma_i \right) \mu_A + \Gamma_A^{(n-1)} x_t \]

\[\equiv \gamma_{0(n)} + \gamma'_{1(n)} x_t. \]

The equity yield can now be written as:

\[g_{t,n}^* = g_{t,n} + \theta_{t,n} \]

\[= \frac{1}{n} \sum_{i=1}^{n} \left(\gamma_{0(n)} + \gamma'_{1(n)} x_t \right) + \theta_{t,n}. \]

We observe the left-hand side, \(g_{t,n}^* \), and we estimate the first term on the right-hand side, which implies that we can also uncover the risk premium component, \(\theta_{t,n} \).

In the same as we use this framework to obtain expectations of future dividend growth, we can apply it to consumption and GDP growth expectations by changing the dependent variable in equation (7).

4 Summary statistics of equity yields

In this section, we summarize the properties of the equity yields for all three indices.

4.1 Equity yields of the S&P 500

The equity yields for the S&P 500 index between October 2002 and October 2010 are plotted in Figure 1. The four lines (in color) in each graph represent the equity yields for four horizons: 1, 2, 5, and 10 years. The graph shows that between 2003 and 2007, short-maturity equity yields were higher than long-maturity equity yields. During the financial crisis this pattern reversed and short-maturity equity yields plummeted compared to long-maturity equity yields. However, long-maturity equity yields also decreased substantially.
The 1-year equity yield for the S&P500 index displays a double dip, the first occurring on December 4th 2008 and the second occurring on March 12th of 2009, with values of -34.3% and -37.2%, respectively. The S&P 500 index level also exhibits a double dip, but the troughs occurred on November 20th 2008, with a level of 752.44 and March 5th with an index level of 682.55. Both these index level troughs occur before the troughs of the 1-year equity yield. The 2, 5, and 10 year equity yields do not exhibit a double-dip pattern. The trough of the 2-year rate occurs on March 12th 2009. The troughs of the 5 and 10-year rates coincide with the second trough of the index level and occur on March 5th 2009. Finally, a very steep decline in the one-year rate occurred between August 18th and October 31st 2008 when the rate dropped from -5.7% to -31.5%. The latter number is close to the first trough of -34.3%. Interestingly, the S&P 500 index level during this period only dropped from 1266.7 on August 18th to 968.8 on October 31st, which is substantially higher than its two troughs of 752.44 and 682.55. Long-maturity equity yields decline further between October 31st 2008 and November 20th 2008 when the index dropped another 22% from 968.8 to 752.44.

In Figure 2, we plot the forward equity yields for maturities between 1 and 2 years (\(n1 = 1\) and \(n2 = 2\)), 2 and 5 years (\(n1 = 2\) and \(n2 = 5\)), and 5 and 10 years (\(n1 = 5\) and \(n2 = 10\)). Interestingly, forward equity yields between 2 and 5 years and 5 and 10 years did not decrease during the crisis but increased instead, which suggests that market participants priced in a recovery after the initial steep decline.

4.2 Equity yields of the Eurostoxx 50 Index

In Figure 3, we plot the equity yields for the Eurostoxx 50 index. As before, the four lines (in color) in each graph represent the equity yields for four horizons: 1, 2, 5, and 10 years. The trough of the one-year rate occurs on May 4th 2009 with an equity yield of -44.5%. Similar to the S&P 500 index, the trough of the 1-year rate occurred after the trough of the index, with the latter occurring on March 9th 2009, when the index value hit 1810 Euros. Compared to the troughs of the S&P500 index, the troughs of the Eurostoxx 50 index occurred later, both for the index and for the 1-year expected growth rate.

As with the S&P500 index, there is one particular period of very steep decline for the one-year rate. Between September 30th and October 23rd 2008 the one-year equity yield decreased from -7.9% to -39.8%. In Figure 4, we plot the forward equity yields. Similar to the expected forward growth rates of the S&P500 index, forward rates between 2 and 5 years and 5 and 10 years did not decrease during the crisis but increased instead.
4.3 Equity yields of the Nikkei 225

In Figure 5, we plot the equity yields for the Nikkei 225 index. The trough of the one-year rate occurs on March 25th 2009 with an equity yield of -46.8%. The index reached its trough on March 10th 2009 with an index level of 7055.0, which as with the other two indexes is before the 1-year growth rate reached its trough.

Between October 3 and October 30th 2008, the one-year equity yield decreased from -6.2% to -17.6%. Apart from this steep decline, there is no particular period over which the growth rate declined abruptly and the growth rate drifts downward gradually to its trough of -46.8%.

In Figure 6, we plot the forward equity yields. As for the S&P500 and the Eurostoxx 50 index, forward equity yields between 2 and 5 years and 5 and 10 years did not decrease during the crisis but increased instead.

4.4 Summary Statistics

In Table 1, we report the summary statistics of the equity yields for all three indexes and for all ten maturities. The average 1-year equity yield is highest for Japan (9%) and lowest for Europe (0.2%). The average 1-year equity yield for the US is 2.5%. The average 10-year equity yield is the highest for the US (2.1%) and lowest for Europe (-0.2%). The average 10-year equity yield for Japan is 1.2%.

The volatilities of the equity yields decline monotonically with maturity for all three indices, reminiscent of bond yields (see for instance Dai and Singleton (2003)). The volatility of equity yields is highest for Japan and lowest for the US at all maturities. Further, over this sample period the equity yields are negatively skewed, which is induced by the large negative numbers during the financial crisis.

5 Predicting macro-economic growth

In this section, we study the predictability of dividend, consumption, and GDP growth by equity yields. This approach follows a long tradition in macro-finance using yield-based variables to forecast either returns or cash flows. Examples include Fama (1984) and Lustig, Roussanov, and Verdelhan (2010) for currency markets, Fama and Bliss (1987), and Campbell and Shiller (1991), and Cochrane and Piazzesi (2005) for bond markets, and Campbell and Shiller (1988), Cochrane (1991), and Binsbergen and Koi Jen (2010) for the aggregate stock market. In this paper, we explore whether the information contained
in equity yields across maturities is useful to forecast various measures of economic growth across different horizons.

5.1 Predicting annual macro-economic growth

Dividend growth We first focus on the predictability of dividend growth by estimating equation (7). We focus on annual dividend growth to avoid the impact of seasonal patterns in corporate payout policies, but we use overlapping monthly observations to improve the power of our tests. The summed dividends within the year measure the annual aggregate dividend.

We use either the 1-year, . . . , 5-year equity yields to predict dividend growth, that is, \(n = 1, \ldots, 5 \). If the risk premium on short-term dividend strips is constant, then it holds that \(\beta_1 = 1 \). The evidence in Binsbergen, Brandt, and Koijen (2010) suggests, however, that the risk premium tends to fluctuate over time, which may induce a deviation from one. However, annual dividend growth reached a minimum -23% for the S&P500, -35% for the Eurostoxx 50, and -32% for the Nikkei 225. This unusual shift in growth rates, as so far anticipated, may help us uncover cash-flow predictability. In addition, how the predictive coefficient is affected also depends on the correlation between expected returns and expected growth rates.

The results are presented in Table 2. Panel A reports the results for the S&P500, Panel B for Eurostoxx 50, and Panel C for the Nikkei 225. The first column reports the point estimate. The second column reports the Newey-West test statistics using 12 lags. The final column reports the R-squared value. We find that all equity yields have strong predictive power for future dividend growth. The R-squared values are very high, suggesting that dividend growth rates, at least during this sample period, are strongly predictable.

Second, we find that the predictive coefficients are monotonically increasing in maturity. As a point of reference, it may be useful to derive what these coefficients look like under two, admittedly strong, assumptions. Namely, if we assume that the risk premium on short-dividend strips is constant and expected dividend growth is an AR(1) process with autoregressive coefficient \(\rho \), then it is straightforward to show that:

\[
\beta_n \approx \frac{n(1 - \rho)}{1 - \rho^n}. \tag{9}
\]

8We follow Fama and French (1988) and sum all dividends within the year. Alternatively, we can reinvest dividends at the 1-month T-bill as in Binsbergen and Koijen (2010). We obtain very similar results for both reinvestment policies.
This expression directly implies $\beta_1 = 1$, as discussed before. We can also solve for ρ for $n = 5$ given $\beta_5 = 2$. This corresponds to an annual autoregressive coefficient of $\rho = 0.64$.\[\text{(9)}\]

Consumption growth
The previous results show that our newly-constructed data is useful in forecasting future dividend growth. We now extend these results for the US and show that S&P500 equity yields also predict future annual consumption growth. We study the same forecasting regressions as before:

$$
\log \left(\sum_{i=1}^{12} C_{t+12+i} \right) - \log \left(\sum_{i=1}^{12} C_{t+i} \right) = \gamma_n + \delta_n g_{t,n}^* + \epsilon_{t+24}^C,
$$

where C_t is now monthly consumption.\[\text{(10)}\]

We present the results in Panel A of Table 3. The structure of the table is the same in Table 2. Consistent with our results for dividend growth predictability, we uncover strong predictability of one-year consumption growth as well. The coefficients are much smaller in this case, which follows from the fact that dividend growth is more volatile than consumption growth during our sample period. As expected, the coefficients are increasing with maturity as long-term equity yields are less exposed to fluctuations in expected growth rates.

As a point of reference, we use in Panel B of Table 3 bond yields to forecast annual consumption growth. We use either the 1-year or the 5-year bond yield, or the yield spread between the 5-year and 1-year bond yields.\[\text{(11)}\] Even though the 5-year bond yield is a fairly strong predictor of consumption growth, it is not nearly as powerful as the equity yields as reported in Panel A.

GDP growth
In Panel A of Table 4 we study the predictive power of S&P500 equity yields for US GDP growth. We predict annual GDP growth, but use in this case quarterly, overlapping data in estimation. Panel A reveals that equity yields are also strong predictors of annual GDP growth. For comparison, we report in Panel B of the same table the predictive power of bonds yields. The results resonate with our findings for consumption growth; equity yields appear to be better forecasters of future macroeconomic growth than bond yields during our sample period.

9This calculation approximately results in the persistence of the equity yield if the persistence of expected returns and expected growth rates is identical.

10We use Personal consumption expenditures (PCE) from Table 2.8.5. of the Bureau of Economic Analysis.

11We use Fama-Bliss bond yields from CRSP.
5.2 Economic outlook around the world

Next, we use the framework we develop in Section 3 to compute longer-term growth expectations. Instead of using a single equity yield, we use two equity yields with maturities equal to 2 and 5 years, respectively. We use multiple equity yields as there may be separate factors driving expected growth rates and the risk premium component, as suggested by the models of Bansal and Yaron (2004), Lettau and Wachter (2007), Lettau and Wachter (2010), and Menzly, Santos, and Veronesi (2004).\footnote{Other examples include Croce, Lettau, and Ludvigson (2009) and Bekaert, Engstrom, and Xing (2009).}

In Figures 7 and 8, we plot the 2-year and 5-year expected growth rates across regions. First, the troughs of the financial crisis were more severe for Japan and Europe than for the US. Second, 2-year expected growth rates decline by as much as 30% in Europe in the bottom of the crisis. Even during a 5-year period (Figure 8), the average decline in growth is still around 10% in the first months of 2009.

We plot the term structures of expected growth during the last day of our sample period in Figure 9. For comparison, we plot in Figure 10 the equity yields, which is a combination of expected growth rates and a risk premium component. Even though the equity yields are quite different across maturities, the growth expectations are much closer together across regions. In all cases, there is a period of accelerated growth, corresponding to transitory shocks to dividends. Long-maturity growth expectations are closer to historical average dividend growth rates around 6-7% in the US, for instance.

6 Risk-premium dynamics

Figures 9 and 10 already suggest that the risk premium component may be quite when expected growth rates do not fluctuate too much. This is consistent with Binsbergen, Brandt, and Koijen (2010) who show that short-maturity discount rates fluctuate substantially, which results in excess volatility for short-term dividend claims. In Figure 11, we plot the dynamics of the risk premium component, $\theta_{t,n}$, for the S&P500 data for 1-, 2-, and 5-year equity yields.

We find that all risk premium estimates fluctuate substantially over time. In fact, the estimates imply that the short-term risk premium component in fact fluctuates more than the longer-maturity component.\footnote{The one-year risk premium component turns somewhat negative during the period 2006-2007, which is attributable to the short sample we have available. As an extension, one can consider to estimate the model under the condition that the risk premium component needs to be positive, see also Campbell and} Perhaps most interestingly, we find that the term
structure of risk premia is more inverted during the recession. The results in Binsbergen, Brandt, and Koijen (2010) already suggest that the risk premium component on the short-maturity dividend claims is on average higher than on the long-maturity dividend claims. We extend this evidence by showing that the steepness of the decline in the term structure of risk premia is counter-cyclical.

7 Growth expectations and the financial crisis

In this section we study the term structure of growth during the financial crisis. We focus on particular months in which there was a large decline in either the short-term or the long-term growth rates (or both). Our main focus is on the S&P500 index.

7.1 November 2007

Between October 31st and November 29th 2007, the one-year equity yield for the S&P500 index decreased from 8.6% to -1.3%. The 5-year rate dropped from 5.6% to 3.6%, the 10-year rate dropped from 4.1% to 3.0% and the index value changed from 1549.4 to 1469.7, a drop of 5%. During this period several major events occurred. First, on October 31st, Meredith Whitney, an analyst at Oppenheimer and Co. predicted that Citigroup had so mismanaged its affairs that it would have to cut its dividends or go bankrupt. By the end of that day, Citigroup shares had dropped 8%, and four days later, Citigroup CEO Chuck Prince resigned. Also, on October 31st, the FOMC lowered the target rate by 25bp to 4.5%. Second, on November 2nd, the Fed approved the Basel II accord. Third, on November 27th, Citigroup raised $7.5 billion from the Abu Dhabi investment authority. Finally, the St. Louis Fed crisis timeline notes for November 1st 2007: “Financial market pressures intensify, reflected in diminished liquidity in interbank funding markets.”

7.2 August 2008

Two large drops in growth rates occur on August 18th and 19th of 2008. The 1-year growth rate changes from -6.9% on August 17th to -11.3% on August 18th, to -15.2%
on August 19th. Several important economic releases occurred around these dates. In addition to the PPI numbers, on August 19th 2008 the statistics on Building Permits and New Housing Starts were released and both numbers were lower than consensus forecasts.

7.3 September 2008

The month of September 2008 was a very turbulent month for financial markets. For example, on September 7th, the Federal Housing Finance Agency (FHFA) placed Fannie Mae and Freddie Mac in government conservatorship, and on September 15th, Lehman Brothers Holdings Incorporated files for Chapter 11 bankruptcy protection. Perhaps surprisingly, growth expectations for the US did not change all that much in September for all maturities. As an illustration, the 1-year rate was -14.1% on September 1st and -15.1% on September 30th, and the volatility of the rate was relatively low. For the US, most of the drop in short- and long-term expectations occurred in October. Growth expectations in Japan and Europe on the other hand, did substantially drop in September as well as in October. For Europe, between September 1st and September 30th, the 1-year rate dropped from -3.3% to -8%, and the 10-year rate dropped from -0.8% to -1.8%. For Japan, the 1-year rate dropped from 7.9% to -3.8% and the 10-year rate dropped from -0.2% to -2%.

7.4 October 2008

During the month October the 1-year rate dropped from -17.5% on October 1st to -31.5% on October 31st. Over the same period, the 2-year rate dropped from -9.4% to -17.3%, the 5-year rate dropped from -2.8% to -6.3%, and the 10-year rate dropped from -1.1% to -2.6%. In the list below we list the major events that happened during that month and we report on each event date the 1, 5, and 10 year equity yields.

- October 3: 1-year = -15.3%, 5-year = -2.9%, 10-year = -1.5%
 - Wells Fargo announces a competing proposal to purchase Wachovia Corporation that does not require assistance from the FDIC.
 - Congress passes and President Bush signs into law the Emergency Economic Stabilization Act of 2008 (Public Law 110-343), which establishes the $700 billion Troubled Asset Relief Program (TARP).

- October 6: 1-year = -15.4%, 5-year = -3.1%, 10-year = -2.1%
- The Federal Reserve Board announce that the Fed will pay interest on depository institutions required and excess reserve balances at an average of the federal funds target rate less 10 basis points on required reserves and less 75 basis points on excess reserves.

- October 7: 1-year = -14.5%, 5-year = -3.0%, 10-year = -2.5%
 - The Federal Reserve Board announces the creation of the Commercial Paper Funding Facility (CPFF), which will provide a liquidity backstop to U.S. issuers of commercial paper through a special purpose vehicle that will purchase three-month unsecured and asset-backed commercial paper directly from eligible issuers.
 - The FDIC announces an increase in deposit insurance coverage to $250,000 per depositor as authorized by the Emergency Economic Stabilization Act of 2008.

- October 8: 1-year = -16.2%, 5-year = -4.2%, 10-year = -2.6%
 - The Federal Reserve Board authorizes the Federal Reserve Bank of New York to borrow up to $37.8 billion in investment-grade, fixed-income securities from American International Group (AIG) in return for cash collateral.
 - The FOMC votes to reduce its target for the federal funds rate 50 basis points to 1.50 percent. The Federal Reserve Board votes to reduce the primary credit rate 50 basis points to 1.75 percent.

- October 12: Non-trading day
 - The Federal Reserve Board announces its approval of an application by Wells Fargo & Co. to acquire Wachovia Corporation.

- October 13: 1-year = -19.4%, 5-year = -4.0%, 10-year = -2.0%
 - The FOMC increases existing swap lines with foreign central banks. The Bank of England, European Central Bank, and Swiss National Bank announce that they will conduct tenders of U.S. dollar funding at 7-, 28-, and 84-day maturities at fixed interest rates.

- October 14: 1-year = -19.4%, 5-year = -4.0%, 10-year = -2.0%
 - The Federal Reserve announces additional details of the Commercial Paper Funding Facility (CPFF).
– The FOMC increases its swap line with the Bank of Japan.

– U.S. Treasury Department announces the Troubled Asset Relief Program (TARP) that will purchase capital in financial institutions under the authority of the Emergency Economic Stabilization Act of 2008. The U.S. Treasury will make available $250 billion of capital to U.S. financial institutions. This facility will allow banking organizations to apply for a preferred stock investment by the U.S. Treasury. Nine large financial organizations announce their intention to subscribe to the facility in an aggregate amount of $125 billion.

– The FDIC creates a new Temporary Liquidity Guarantee Program to guarantee the senior debt of all FDIC-insured institutions and their holding companies, as well as deposits in non-interest-bearing deposit transaction through June 30, 2009.

– 9 Large Banks agree to capital injection from the Treasury.

• October 16: 1-year = -19.7%, 5-year = -4.2%, 10-year = -2.5%

– Tier 1 capital definition is changed to include stock purchased by Treasury.

• October 21: 1-year = -20.8%, 5-year = -4.6%, 10-year = -3.0%

– The Federal Reserve Board announces creation of the Money Market Investor Funding Facility (MMIFF). Under the facility, the Federal Reserve Bank of New York provides senior secured funding to a series of special purpose vehicles to facilitate the purchase of assets from eligible investors, such as U.S. money market mutual funds. Among the assets the facility will purchase are U.S. dollar-denominated certificates of deposit and commercial paper issued by highly rated financial institutions with a maturity of 90 days or less.

• October 22: 1-year = -22.1%, 5-year = -5.2%, 10-year = -3.6%

– The Federal Reserve Board announces that it will alter the formula used to determine the interest rate paid to depository institutions on excess reserve balances. The new rate will be set equal to the lowest FOMC target rate in effect during the reserve maintenance period less 35 basis points.

• October 23: 1-year=-28.4%, 5-year=-6.3%, 10-year=-3.2%

– Former Federal Reserve chairman Alan Greenspan testifies before the House Committee of Government Oversight and Reform
• October 24: 1-year = -28.5%, 5-year = -6.6%, 10-year = -3.4%
 - PNC Financial Services Group Inc. purchases National City Corporation, creating the fifth largest U.S. bank.

• October 28: 1-year = -28.3%, 5-year = -6.2%, 10-year = -2.5%
 - The U.S. Treasury Department purchases a total of $125 billion in preferred stock in nine U.S. banks under the Capital Purchase Program.
 - The FOMC and Reserve Bank of New Zealand establish a $15 billion swap line.

• October 29: 1-year = -28.0%, 5-year = -6.3%, 10-year = -2.6%
 - The FOMC votes to reduce its target for the federal funds rate 50 basis points to 1.00 percent. The Federal Reserve Board reduces the primary credit rate 50 basis points to 1.25 percent.
 - The FOMC also establishes swap lines with the Banco Central do Brasil, Banco de Mexico, Bank of Korea, and the Monetary Authority of Singapore for up to $30 billion each.
 - The International Monetary Fund (IMF) announces the creation of a short-term liquidity facility for market-access countries.

As can be seen from this overview, one of the largest drops in the one-year expected growth rate occurred on October 23rd when former Federal Reserve chairman Alan Greenspan testifies before the House Committee of Government Oversight and Reform. This led to a decrease in the 1-year growth rate from -24.7% to -32.0%, the 2-year growth rate decreased from -14.6% to -17.5% and the 3-year growth rate decreased from -9.5% to -10.9%. The 4 to 8-year growth rates also decreased slightly. Finally, the 9-year and 10-year rates increased slightly, from -3.2% to -3.0% and from -3.6% to -3.2% respectively. So even though short-term growth rates were revised downwards substantially, there was also good news, in the sense that market participants adjusted downward their beliefs about the long-term negative impact of the crisis.
8 Conclusion

We use a new data set on dividend futures with maturities up to 10 years to uncover expected dividend growth rates across three major regions around the world: the US, Europe, and Japan. We use these futures to derive equity yields, analogous to bond yields, and decompose these yields into expected growth rates of dividends and a risk premium component. We show that these expected growth rates are important leading indicators of economic growth as measured by GDP growth, consumption growth, and dividend growth. The predictive power of dividend futures outperforms other indicators such as bond yields. We relate the dynamics of growth expectations to recent events related to the financial crisis and the recent turmoil following the earthquake in Japan.
References

<table>
<thead>
<tr>
<th>Maturity in years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500 Index (Oct 2002 - Oct 2010)</td>
<td>Mean</td>
<td>0.0248</td>
<td>0.0230</td>
<td>0.0212</td>
<td>0.0217</td>
<td>0.0222</td>
<td>0.0215</td>
<td>0.0209</td>
<td>0.0205</td>
<td>0.0210</td>
</tr>
<tr>
<td></td>
<td>Stdev</td>
<td>0.1284</td>
<td>0.0904</td>
<td>0.0624</td>
<td>0.0507</td>
<td>0.0439</td>
<td>0.0389</td>
<td>0.0349</td>
<td>0.0315</td>
<td>0.0295</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0659</td>
<td>0.0506</td>
<td>0.0416</td>
<td>0.0330</td>
<td>0.0308</td>
<td>0.0296</td>
<td>0.0259</td>
<td>0.0232</td>
<td>0.0209</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>-0.3717</td>
<td>-0.2946</td>
<td>-0.1929</td>
<td>-0.1466</td>
<td>-0.1217</td>
<td>-0.1037</td>
<td>-0.0902</td>
<td>-0.0763</td>
<td>-0.0646</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.1876</td>
<td>0.1458</td>
<td>0.1039</td>
<td>0.1065</td>
<td>0.1032</td>
<td>0.0934</td>
<td>0.0853</td>
<td>0.0783</td>
<td>0.0768</td>
</tr>
<tr>
<td>DJ Eurostoxx 50 Index (Oct 2002 - Oct 2010)</td>
<td>Mean</td>
<td>0.0020</td>
<td>-0.0169</td>
<td>-0.0134</td>
<td>-0.0097</td>
<td>-0.0070</td>
<td>-0.0068</td>
<td>-0.0045</td>
<td>-0.0025</td>
<td>-0.0010</td>
</tr>
<tr>
<td></td>
<td>Stdev</td>
<td>0.1647</td>
<td>0.1333</td>
<td>0.0954</td>
<td>0.0729</td>
<td>0.0590</td>
<td>0.0496</td>
<td>0.0429</td>
<td>0.0381</td>
<td>0.0339</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0359</td>
<td>0.0136</td>
<td>0.0052</td>
<td>0.0006</td>
<td>0.0008</td>
<td>-0.0066</td>
<td>-0.0036</td>
<td>0.0014</td>
<td>0.0022</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>-0.4452</td>
<td>-0.4321</td>
<td>-0.3197</td>
<td>-0.2442</td>
<td>-0.1946</td>
<td>-0.1586</td>
<td>-0.1342</td>
<td>-0.1170</td>
<td>-0.1030</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.3374</td>
<td>0.2783</td>
<td>0.1931</td>
<td>0.1478</td>
<td>0.1229</td>
<td>0.1063</td>
<td>0.0914</td>
<td>0.0814</td>
<td>0.0751</td>
</tr>
<tr>
<td>Nikkei 225 Index (Jan 2003 - Oct 2010)</td>
<td>Mean</td>
<td>0.0900</td>
<td>0.0525</td>
<td>0.0429</td>
<td>0.0386</td>
<td>0.0353</td>
<td>0.0326</td>
<td>0.0298</td>
<td>0.0266</td>
<td>0.0209</td>
</tr>
<tr>
<td></td>
<td>Stdev</td>
<td>0.2116</td>
<td>0.1592</td>
<td>0.1196</td>
<td>0.0969</td>
<td>0.0814</td>
<td>0.0696</td>
<td>0.0599</td>
<td>0.0511</td>
<td>0.0409</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.0712</td>
<td>0.0349</td>
<td>0.0239</td>
<td>0.0183</td>
<td>0.0159</td>
<td>0.0148</td>
<td>0.0148</td>
<td>0.0151</td>
<td>0.0155</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>-0.4680</td>
<td>-0.4318</td>
<td>-0.3261</td>
<td>-0.2504</td>
<td>-0.2014</td>
<td>-0.1670</td>
<td>-0.1415</td>
<td>-0.1218</td>
<td>-0.1051</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.4402</td>
<td>0.3066</td>
<td>0.2548</td>
<td>0.2165</td>
<td>0.1815</td>
<td>0.1557</td>
<td>0.1319</td>
<td>0.1087</td>
<td>0.0935</td>
</tr>
</tbody>
</table>

Table 1: Summary statistics equity yields
<table>
<thead>
<tr>
<th>n</th>
<th>β_n</th>
<th>t-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>19.79</td>
<td>88%</td>
</tr>
<tr>
<td>2</td>
<td>1.05</td>
<td>15.78</td>
<td>84%</td>
</tr>
<tr>
<td>3</td>
<td>1.51</td>
<td>17.76</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>1.78</td>
<td>10.56</td>
<td>72%</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>7.89</td>
<td>68%</td>
</tr>
</tbody>
</table>

Panel A: S&P500

<table>
<thead>
<tr>
<th>n</th>
<th>β_n</th>
<th>t-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.99</td>
<td>12.67</td>
<td>78%</td>
</tr>
<tr>
<td>2</td>
<td>1.13</td>
<td>12.47</td>
<td>71%</td>
</tr>
<tr>
<td>3</td>
<td>1.55</td>
<td>12.38</td>
<td>69%</td>
</tr>
<tr>
<td>4</td>
<td>1.96</td>
<td>11.59</td>
<td>64%</td>
</tr>
<tr>
<td>5</td>
<td>2.35</td>
<td>10.21</td>
<td>60%</td>
</tr>
</tbody>
</table>

Panel B: Eurostoxx 50

<table>
<thead>
<tr>
<th>n</th>
<th>β_n</th>
<th>t-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.67</td>
<td>11.49</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>0.88</td>
<td>13.61</td>
<td>78%</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>12.86</td>
<td>76%</td>
</tr>
<tr>
<td>4</td>
<td>1.43</td>
<td>11.10</td>
<td>74%</td>
</tr>
<tr>
<td>5</td>
<td>1.69</td>
<td>9.98</td>
<td>73%</td>
</tr>
</tbody>
</table>

Panel C: Nikkei 225

Table 2: Predictability of dividend growth by equity yields
Panel A: Consumption growth predictability by equity yields

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>T-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>0.37</td>
<td>5.57</td>
<td>50.7%</td>
</tr>
<tr>
<td>4-year</td>
<td>0.33</td>
<td>6.76</td>
<td>54.6%</td>
</tr>
<tr>
<td>3-year</td>
<td>0.28</td>
<td>8.26</td>
<td>63.4%</td>
</tr>
<tr>
<td>2-year</td>
<td>0.20</td>
<td>7.83</td>
<td>68.5%</td>
</tr>
<tr>
<td>1-year</td>
<td>0.14</td>
<td>8.59</td>
<td>73.2%</td>
</tr>
</tbody>
</table>

Panel B: Consumption growth predictability by bond yields

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>T-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-year</td>
<td>0.01</td>
<td>2.19</td>
<td>28.8%</td>
</tr>
<tr>
<td>5-year</td>
<td>0.02</td>
<td>3.79</td>
<td>47.0%</td>
</tr>
<tr>
<td>5-1-year</td>
<td>-0.01</td>
<td>-1.06</td>
<td>8.1%</td>
</tr>
</tbody>
</table>

Table 3: Predictability of consumption growth by equity yields (Panel A) and bond yields (Panel B).
Panel A: GDP growth predictability by equity yields

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>T-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>0.24</td>
<td>3.51</td>
<td>26.7%</td>
</tr>
<tr>
<td>4-year</td>
<td>0.22</td>
<td>4.83</td>
<td>30.8%</td>
</tr>
<tr>
<td>3-year</td>
<td>0.20</td>
<td>8.88</td>
<td>37.2%</td>
</tr>
<tr>
<td>2-year</td>
<td>0.14</td>
<td>10.42</td>
<td>42.1%</td>
</tr>
<tr>
<td>1-year</td>
<td>0.11</td>
<td>9.80</td>
<td>46.4%</td>
</tr>
</tbody>
</table>

Panel B: GDP growth predictability by equity yields

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>T-statistic</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-year</td>
<td>0.00</td>
<td>0.93</td>
<td>3.9%</td>
</tr>
<tr>
<td>5-year</td>
<td>0.01</td>
<td>2.25</td>
<td>15.7%</td>
</tr>
<tr>
<td>5-1-year</td>
<td>0.00</td>
<td>0.22</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Table 4: Predictability of GDP growth by equity yields (Panel A) and bond yields (Panel B).
Figure 1: Equity yields: S&P500 Index
The graph displays the equity yields $g_{t,n}^*$ for $n = 1, 2, 5, 10$ years for t varying between October 7th 2002 and October 13th 2010.

Figure 2: Forward equity yields: S&P500 Index
The graph displays the forward equity yields $f_{t,n1,n2}$ for $n1 = 1, 2$ and 5 years and $n2 = 2, 5$ and 10 years.
Figure 3: Equity yields: DJ Eurostoxx 50 Index
The graph displays the equity yields $g_{t,n}$ for $n = 1, 2, 5$ and 10 years for t varying between October 7th 2002 and October 13th 2010.

Figure 4: Forward equity yields: DJ Eurostoxx 50 Index
The graph displays the forward equity yields $f_{t,n1,n2}$ for $n1 = 1, 2$ and 5 years and $n2 = 2, 5$ and 10 years.
Figure 5: Equity yields: Nikkei 225 Index
The graph displays the equity yields $g_{t,n}^*$ for $n = 1, 2, 5$ and 10 years for t varying between October 7th 2002 and October 13th 2010.

Figure 6: Forward equity yields: Nikkei 225 Index
The graph displays the forward equity yields f_{t,n_1,n_2} for $n_1 = 1, 2$ and 5 years and $n_2 = 2, 5$ and 10 years.
Figure 7: 2-year expected dividend growth across regions
The graph displays the expected growth rate $g_{t,n}$ for $n = 2$ years for t varying between January 14th 2003 and October 13th 2010 for three regions: the US (as represented by the S&P500 Index), Europe (as represented by the DJ Eurostoxx 50 index), and Japan (as represented by the Nikkei 225 index).
The graph displays the expected growth rate $g_{t,n}$ for $n = 5$ years for t varying between January 14th 2003 and October 13th 2010 for three regions: the US (as represented by the S&P500 Index), Europe (as represented by the DJ Eurostoxx 50 index), and Japan (as represented by the Nikkei 225 index).

Figure 8: 5-year expected dividend growth across regions
Figure 9: Term structure of expected growth on October 13th 2010

The graph displays the equity yields $g_{t,n}^*$ for $n = 1, \ldots, 10$ years for t equals October 13th 2010 for three regions: the US (as represented by the S&P500 Index), Europe (as represented by the DJ Eurostoxx 50 index), and Japan (as represented by the Nikkei 225 index).
The graph displays the equity yields $g_{t,n}^*$ for $n = 1, ..., 10$ years for t equals October 13th 2010 for three regions: the US (as represented by the S&P 500 Index), Europe (as represented by the DJ Eurostoxx 50 index), and Japan (as represented by the Nikkei 225 index).
Figure 11: Risk-premium dynamics across maturities
The graph displays the risk premium component for 1-, 2-, and 5-year equity yields for the S&P500 data.